

Arney Computer Systems, 2012 3/13/2012

The Trap Diagnostic Facility (TDF) from Arney
Computer Systems is a revolutionary software
diagnostic tool for use with the IBM z/OS
operating system. TDF uses the most recent
IBM hardware facilities to dynamically maintain
control of the execution of the applications to be
debugged. Using the hardware TRAP facility
rather than using software recovery exits
provides several advantages. Among them,
user recovery routines can be debugged just as
easily as other user-written code.

TDF does not require any code changes to the
application to be debugged, eliminating the
chance of errors being introduced into the code
during the debugging process. The system was
designed from the ground up to be used for
debugging complex multi-tasking, server-
oriented software environments. TDF’s dual-
mode debugging support provides for both
interactive and non-interactive debugging.

The TDF Server runs in its own address space
and provides support for any number of
applications being debugged and any number of
user interface sessions. The Server is a 64-bit
z/OS application utilizing memory object
technology to maintain the required data
structures, trace data, user interface responses,
and display data buffers above the 2 GB bar
where they have no impact on the applications
being debugged. On z/OS releases that support
code execution above the bar, much of the TDF
code is relocated there to reduce the amount of
common storage used below the bar.

An ISPF application provides the user interface
to TDF. The ISPF session is used to perform
interactive debugging tasks as well as the
development of non-interactive traces. Menu-
driven panels, complete with fast- path
commands, can be used to perform debugging
tasks or the low-level command interface can be
used to directly perform many operations. Full

screen operations such as type-over
modifications for storage are provided as well as
full screen MVS control block displays and editor
panels used to list and modify various types of
system information.

TDF uses both SVC screening and PC
screening methodologies to gain control at key
points within a program’s execution. In
programs specified for intercept handling,
System Breakpoints are inserted automatically
at strategic points such as just prior to a
program entry, before and after a new task is
attached, at the definition and removal of
recovery routines, and at the entry to a recovery
routine. These System Breakpoints provide the
opportunity for the user to perform tasks such as
displaying storage, instruction tracing, or setting
user breakpoints.

In addition, TDF provides the ability for the user
to identify unique code requirements such as the
use of shared code. When code (in either
private or common storage) can be shared
between multiple tasks, some being debugged
and some not, TDF has the ability to create
unique copies of the code for a debugged task.
It can also provide “pass-through” support for
tasks not being debugged so that the presence
of traces or breakpoints inserted into the code
do not affect the non-debugged tasks.

The ISPF user interface is used to perform
interactive debugging operations on the user
application. The interface is used to control the
connected unit of work. Breakpoints can be
inserted, storage areas and registers displayed
and modified, and single instruction step tracing
performed. These facilities allow detailed
inspection of the program operation at the single
instruction level of detail.

One of the unique features of TDF is its support
of a non-interactive, dynamic trace facility. This
facility allows the execution of a user application
at near native speed while still collecting debug
information at strategic points of the execution.
Up to 4,000 user-defined trace ids can be used
along with trace points and map definitions to
establish locations and data for data collection.
The data to be collected at the trace point is
defined by the associated trace id and one or
more maps. The collected data along with the
trace id information is asynchronously logged to
an MVS data set for later viewing.

This high speed, Dynamic Trace facility can be
performed on a Group of defined tasks. These
tasks may reside in one or more address
spaces. The set of tasks are treated as a single
diagnostic unit for performing a trace. All trace
points encountered by any of the tasks are
logged to the same trace data set. This makes
the Dynamic Trace facility very useful in
resolving timing issues between related tasks,
which are very difficult to find using traditional
tracing methods.

Having the ability to create dynamic traces on
program code can be very useful even during
the initial development of an application or
software product. Today, every individual
program or software product has its own
internally designed and coded diagnostic
facilities. Knowing the Dynamic Trace is there
as an available tool, the developer can eliminate
the time and effort required to design and
implement internal diagnostics enabling
products to be brought to market faster. In
addition, the Dynamic Trace has the advantage
of being able to be externally adapted to
conditions that were not known at the time the

original code was developed, making an existing
internal diagnostic unsuitable for the newly
discovered situation.

TDF provides a Trace Run-Time facility that can
be distributed with a program or software
product and installed along with the target code.
Trace definitions can be created at the
development site to gather debug data to assist
in resolving a site-specific problem. The Trace
definitions can be sent to the customer site and
used along with the Run-Time facility to perform
the Trace. When the resulting Trace data set is
sent back to the development site, it can be
viewed and analyzed to resolve the customer-
specific problem.

TDF requires z/OS version 1.9 or above
operating system with an ISPF session running
under TSO. No other software or specific
hardware is required. The Server must be run
as a started task or batch job.

TDF is available for local installation and testing
at no charge. You are encouraged to use it
before deciding if it meets your requirements. If
it fails to completely please you, remove it from
your computer system and pay nothing. The
trial test system and documentation can be
obtained from our Web site.

